Introduction: Human immunodeficiency virus (HIV) infection is contributing to the re-emergence of opportunistic tuberculosis such as TB globally, and is strongly associated with the development of multi- or extensively drug-resistant tuberculosis (MDR, XDR-TB). The effects of HIV on the activation of cytotoxic lymphocytes against mycobacteria are poorly characterized. 

Objective: To determine the effect of HIV-1 on the antigen specific and innate cytotoxic/antibacterial activity of lymphocytes isolated from a tuberculin-reactive donor. 

Study design: In vitro model to investigate basic concepts for how HIV predisposes people to Mycobacterium tuberculosis (M.tbf).

Setting: The work was performed at the Department of Microbiology/Immunology, University of Texas Medical Branch.

Methods: We isolated human peripheral blood mononuclear cells (PBMC) from a tuberculin-reactive donor and infected the cells in vitro with HIV-1 (strains Tyb and 89.6) and with the well characterized M. bovis Bacillus Calmette-Guérin (BCG). Mock was the negative control and inter interleukin 15 (IL-15) was the positive control.

Results: Our results demonstrate that HIV-1 infection of PBMC from a healthy tuberculin-reactive donor may reduce the antimicrobial profile of cytotoxic lymphocytes activated by memory recall. The innate activation of natural killer cells was also suppressed. These effects differ with the HIV strain and the activation stimulant.

Conclusion: Understanding the effects of HIV-1 on T cell activation is essential to understanding the physiological basis for inadequate cytotoxic lymphocyte activity in HIV patients and for informed guidance of cytokine-based therapy to restore T cell function so as to boost host defense to M.tb or other opportunistic pathogens.

Key words: HIV, TB, cytotoxic Lymphocytes

Abstract

INTRODUCTION

HIV infection is contributing to the re-emergence of opportunistic tuberculosis such as TB globally, and is strongly associated with the development of MDR- and XDR-TB. These pathogen are known to form a deadly liaison. At the moment, HIV infection and the concomitant conditions have been the leading cause of death for people living with HIV/AIDS. HIV immune compromise increases risk of infection or reactivation of TB and promotes development of drug resistant strains (1,2). TB is the largest cause of death in HIV-1 infected people (3,4). There is an estimated one third to one half of the 30 million AIDS deaths that have occurred worldwide. Different strains of M.tb, the causative agent of TB, are known to modify the host immune response in a strain-specific manner (3).

Cell-mediated immunity is the major protective immune response against intracellular bacteria such as M.tb (4). In addition to reduction of CD4+ T cells numbers, HIV alters susceptibility to pathogens via dysregulation of other cell mediated immune mechanisms, including decreased microbicidal activity of macrophages (5). Recent studies using an in vitro model demonstrated that HIV infection of CD4+ T cells suppresses granulysin activation in CD8+ T cells in response to IL-15 or IL-21. Granulysin is a potent antimicrobial protein contained within the granules of Cytotoxic lymphocytes (NK cell). Understanding the effects of HIV-1 on T cell activation is essential to understanding the physiological basis for inadequate cytotoxic lymphocyte activity in HIV patients and for informed guidance of cytokine-based therapy to restore T cell function so as to boost host defense to M.tb.

METHODS

In these studies we used primary human peripheral blood mononuclear cells (PBMC) from healthy donors ages 21-49 as approved by the Institutional Review Board, University of Texas Medical Branch. The PBMC were used to determine the in vitro effects of HIV-1 (strains Tyb and 89.6) on antigen-specific (memory) recall to PPD (purified protein derivative) or BCG by peripheral blood T cells of healthy tuberculin skin test positive individuals. The innate response of natural killer (NK) cells was also determined. Antigen specific T cell activation was assessed by using multivariate flow cytometry. A. Flow chart on the method used. B. Figure showing culture plate.

Staining panel included:

CD4+: Pacific blue

CD8+: PerCPCy5.5

Granulysin-FITC/488

CD107a- PE-Cy5

Culture PBMC with media (control), M. bovis BCG (1 MOI) or rIL-15 (15 ng/ml) for 3 days. Samples were collected on a BD FACS Fortessa using FACS DIVA software and analyzed using FC Express version 5.

RESULTS

• CD4+ and CD8+ T cells increased expression of CD107 after exposure to antigen (BCG) or IL-15. 

• HIV infected Tyb and 89.6 suppressed CD4+ and CD8+ T cell activation of CD107a by antigen (BCG), while only Tyb affected the IL-15 response. 

• NK cells showed the highest expression of granulysin, with innate activation by BCG as well as cytokine activation by IL-15 observed. 

• Activation of granulysin expression by CD8+ T cells and NK cells was suppressed by HIV-1, with differences in effects observed among the two HIV isolates.

• These results suggest that HIV-1 infection of PBMC may reduce the antimicrobial profile and cytotoxicity of activated cytotoxic lymphocytes, and these effects may differ with the HIV strain and the activation stimulant. Further studies are needed to determine the importance of these effects in HIV/M.tb co-infection.

CONCLUSION

Understanding the effects of HIV-1 on T cell activation is essential to understanding the physiological basis for inadequate cytotoxic lymphocyte activity in HIV patients and for informed guidance of cytokine-based therapy to restore T cell function so as to boost host defense to M.tb.

Future Research Direction/Recommendation

• Characterize cytotoxic lymphocyte (T cell and NK cell) defects in HIV and HIV/M.tb co-infected patients. 

• Identify molecular mechanisms whereby HIV or HIV proteins may suppress T cell activation. 

• Investigate ways to restore cytotoxic/antibacterial lymphocyte function through immune modulation.

Reference


Acknowledgement

The authors would like to thank: Marelle Montanez and Veronica Calderon of Endley's lab, Mark Griffin for providing flow cytometric expertise and Dr. Ray Waters of the National Animal Diseases Center, USDA for kindly providing a stock of M. bovis BCG (Pasteur strain).

This work was supported by the Institute for Human Infections and Immunity and the Department of Microbiology and Immunology, UTMB and the Kenya Medical Research Institute, Centre for Respiratory Diseases Research.